Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state
نویسندگان
چکیده
Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release.
منابع مشابه
A tri state mechanism for oxygen release in fish hemoglobin: Using Barbus sharpeyi as a model
Hemoglobin is a porphyrin containing protein with an a2b2 tetrameric structure and like other porphyrin compounds shows spectral behavior of species specific characteristics. Researchers tend to relate bands in the hemoglobin spectra to certain structural and/or functional features. Given the fact that hemoglobin is the main oxygen carrier in animals functioning through the Oxy«Deoxy equilibriu...
متن کاملEvaluation and Comparison of Capital Structure of the Quasi-State-Owned Firms with Non-State-Owned Companies in Tehran Stock Exchange
The purpose of this study was to investigate the effect of thequasi-state ownership of the stock exchange in the ratio of short-termand long-term Yhay Circle is one of the string str in this study usingdata from 51 companies accepted has been used in the Tehran StockExchange. methods of statistical analysis in this study, the correlationof the Q Rgr million via software using the Excel, spss18,...
متن کاملSpin and Isospin Asymmetry, Equation of State and Neutron Stars
In the present work, we have obtained the equation of state for neutron star matter considering the in uence of the ferromagnetic and antiferromagnetic spin state. We have also investigated the structure of neutron stars. According to our results, the spin asymmetry stiens the equation of state and leads to high mass for the neutron star.
متن کاملChange in Oxygen Absorption of Human Adult and Fetal Hemoglobin Due to 940 MHz Electromagnetic Field Radiation Exposure
The effects of electromagnetic fields (EMFs) radiation at the frequency of 940 MHz on the structure and function of human adult and fetal hemoglobin (HbA and HbF) were studied. After extraction and purification of HbA and HbF, the oxygen absorption values for exposed and unexposed HbA and HbF to EMF were compared. The slope of oxygen absorption curve for exposed HbA was increased while that for...
متن کاملCOMPARISON OF THE EQUATIONS OF STATE FROM JOULE-THOMSON COEFFICIENT
In the present work, we have examined the ability of some different equations of state in predicting the Joule-Thomson coefficient, ?J-T, of different fluids. For dense fluids, for which density is greater than the Boyle density, ?B, two appropriate equations of state, namely the linear isotherm regularity, LIR, and the dense system equation of state, DSEOS, have been examined. The results show...
متن کامل